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Motivation

* Why? Gain insight on the neural processes
underlying a mouse’s decision-making process in
curiosity-driven navigation

* How? Combine reinforcement learning with multiple
frameworks for intrinsic rewards

* Result? Quantify contributions of extrinsic and
Intrinsic rewards, track an evolving world model, and
observe effects on cohorts with stimulated neural
circuits

* What’s different? We focus on modeling the learning
process itself rather than just learned behavior

Mouse Maze Dataset

e Water-starved mice
* Excitatory: C21
e Control: saline
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* Maze structure:
* 127-node binary
tree
* Fourrandomly
alternating water
ports

e Task structure:
e 10 sessions

(1/day)
e 45 min each
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Markov Decision Processes

* Next stateis solely a :l Agent l
function of the state| |reward
current state (Markov % | |&
Property) ; 5., | Environment ]4—

Algorithms

1. Q-learning (control):

action
/h

 Q(s,a) =0(s,a) +« (r + ymaxQ(s’, a’) — Q(s, a) (for each goal)

2. Uncertainty reward:
* Bayesian dynamics as world model

* Prior: P(s'|s,a) ~ Dir(a;%, ay%, ---’“lss'?)

* Mean given by posterior: P(s'|s,a) =

3. Novelty reward:

t,k
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4. Epsilon decay

5. Combined (all of the above)

Tuning hyperparameters via log-
likelihood optimization

N lj
2j=1 2= logmj(aijlsij)
# total timesteps

e Minimize: loss = —

* 1; = softmax policy for Q_list[j] for trial j with § = 1.0
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Uncertainty succeeds marginally
Log Likelihood Across Trials (Overall Cohort Means)
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Discussion

* Results suggest that reducing uncertainty may be a
source of intrinsic reward in mice

* Generally, Q-learning algorithms more effectively
predict stimulated mouse behavior

* Next step isinverse reinforcement learning = derive
the reward parameterization from the ground truth data
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